Maths - No Problem!

Calculation Policy

Table of Contents

Addition	Subtraction
Calculation Policy 2	Calculation Policy.................. 23
Reception......................... 2	Reception 23
Year 1 6	Year 1............................ 26
Year 2 9	
Year 3 11	Year 3............................ 31
Year 4 14	Year $4 . .$. 34
Year 5 18	Year 5............................ 38
Year 6 21	

Calculation Policy \qquad 43	
	Reception....................... 43
	Year $1 . ~ 44 ~$
	Year 2 47
	Year 3 50
	Year 4 54
	Year 5 58
	Year 6 64

Calculation Policy \qquad 68	
	Reception 68
	Year $1 . ~ 69 ~$
	Year 2 71
	Year 3 74
	Year 4 75
	Year $5 . ~ 79 ~$
	Year 6 82

Introduction

Maths - No Problem! materials use real-world contexts to help pupils understand the importance of mathematics in their everyday lives.

The progression of calculation skills, focusing on addition, subtraction, multiplication and division is developed using a Concrete Pictorial Abstract (CPA) approach and delivered through problem solving.

Key mathematical ideas are reinforced using Bruner's spiral curriculum: a teaching approach in which each subject or skill area is revisited in intervals at a more sophisticated level each time.

The Maths — No Problem! Calculation Policy guides practitioners through a clear progression of key skills and representations at each year group.

Addition Calculation Policy
 Reception

Year	Topic/Strand	Representation		
Reception	Perceptual Subitising		0	zero
		-	1	one
		-	2	two
		-	3	three
		$\bullet \bullet$	4	four
		${ }_{\bullet 0}^{\bullet 0}$	5	

A key development underpinning the ability to add is subitising. Perceptual subitising is when pupils can recognise the quantity of items in groups up to 5 without counting each item.

This is a mathematical structure that underpins all addition situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection.

| Year | Topic/Strand | Representation |
| :---: | :---: | :---: | Key Idea | (|
| :--- |

Reception Adding Zero

Pupils understand zero can be added to any number but the number will remain unchanged.

Addition Calculation Policy

Year 1

Addition Calculation Policy

Year 2

Key Idea

Year 2

Part - Part -

Whole

Counting

Year 2
on Using a
Number Line

$$
84=70+14
$$

This is a mathematical structure that underpins al addition situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection.

Pupils develop an understanding of the parts and the whole within an equation.

The use of the number line is further developed when counting starts from a given number, relying on pupils' ability to locate and count from a given number, including starting from a 2 -digit number.

Initially a 1-digit number is added to a 2-digit number, then this progresses to a number line shown with intervals of 10 when adding 2 -digit numbers that do not have any ones.

The use of base 10 blocks provides a representation of the place value, primarily of 2-digit numbers.

This representation is related to the formal written method but also encourages pupils to use their understanding of adding the same noun to add 2-digit numbers. For example, $20+30$ can be understood as 2 tens +3 tens. The sum of these numbers is 50 or 5 tens.

An understanding of place value will support addition as well as subtraction, multiplication and division.
Year Topic/Strand

| Formal Written |
| :--- | :--- | :--- |
| Method |
| Year 2 |

This is a procedural method that relies on a pupil's conceptual understanding of addition.

This begins without renaming and progresses to the renaming of 10 ones into 1 ten. Pupils understand that at this stage, they start with the addition of the ones before they add the tens This method is supported with base 10 block representation.

The formal written method is always accompanied by a written equation to ensure that the relationship between the representations is made.

Pupils use their understanding of adding the same noun when adding fractions through a written sentence. Fractions with the same denominator are added using a '[] and [] make []’ structure

Key Idea

Adding

Fractions

$\underline{1}$ and $\underline{\underline{2}}$ make 1 whole.

Addition Calculation Policy

Year 3

Key Idea

Year	Topic/Strand	Representation	Key Idea
Year 3	Part - Part - Whole		This is a mathematical structure that underpins all addition situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection. Pupils develop an understanding of the parts and the whole within an equation.
Year 3	Counting Rumbing ane		The use of the number line is further developed when counting starts from a given number, relying on pupils' ability to locate and count from a given number, including starting from a 3-digit number. Initially a 1 -digit number is added to a 3 -digit number, then this progresses to a number line shown with intervals of 1 , then 10 and eventually to 100 .
Year 3	Base 10 Blocks		The use of base 10 blocks provides a representation of the place value of 3-digit numbers. This representation is related to the formal written method but also encourages pupils to use their understanding of adding the same noun to add 3 -digit numbers. For example, $200+500$ can be understood as 2 hundreds +5 hundreds. The sum of these numbers is 700 or 7 hundreds. Progression is made by adding ones, then tens and finally hundreds before the addition of all 3 is undertaken. An understanding of place value will support addition as well as subtraction, multiplication and division.

This procedural method progresses from the renaming of 10 ones into 1 ten to include the renaming of 10 tens to 1 hundred. The procedure remains unchanged from Year 2.

Pupils understand that at this stage, they start with the addition of the ones, then the tens, then finally the hundreds

This method is supported with base 10 block representation. The formal written method is always accompanied by a written equation to ensure that the relationship between the representations is made.

Pupils are given the opportunity to further develop their number sense by using a 'make 100 ' strategy with numbers that are 'near hundreds'

They use their part-whole understanding to rename a given number to make 100. For example, $498+50$ can be renamed as $498+2+48$. Pupils add 2 to 498 to make 500, then add the remaining 48.

Addition Calculation Policy

Year 4

Place-value counters are used to represent addition situations. This transition relies on pupils understanding the value of each counter without being able to count its physical attributes

Pupils will have the opportunity to rename 10 counters of the same value to 1 counter with a value 10 times greater and vice versa. The idea of composing and decomposing at a rate of 10 should be well understood at this stage.

Year	Topic/Strand	Representation	Key Idea
Year 4	Formal Written Method		Pupils will have the opportunity to use a long and short version of this procedural method. In the long representation, the sum of adding each place is shown in its entirety before being added to find the final sum. In the short representation, the sum of each place is shown as part of the total sum and as a small number added to an existing place when a ten of one place is made. The procedure remains unchanged from Year 2.
Year 4	Estimating the Sum	Start by estimating. $\begin{aligned} & 4188 \approx 4200 \\ & 3245 \approx 3200 \end{aligned}$ The answer will be about 7400. $4200+3200=7400$	Estimation is introduced as an approach to start a calculation. Estimation is a skill that helps develop number sense. Pupils are expected to be able to decide if an answer is reasonable. Beginning a calculation with estimation is developed during the addition chapter.
Year 4	Making 10 and Making 100	$\begin{aligned} & \text { make } 10 \\ & 4072+8= \\ & 4072+8=4070+10 \\ & 4072+8=4080 \end{aligned}$ make 100 $\begin{aligned} 97+5213 & = \\ 97+5213 & =100+5210 \\ & =5310 \end{aligned}$	A mental method that involves renaming numbers to make 10 or 100 before finding the sum. Pupils develop their number sense by recognising numbers close to a ten or close to a hundred and renaming a number in the equation to bring a number to the nearest 10 or nearest 100 without having to compensate the sum.

Addition Calculation Policy

Year 5

Addition Calculation Policy

Year 6

Year	Topic/Strand	Representation
Year 6	Addition within Order of Operations	First, carry out all the operations in (). Next, perform all the multiplication and division. Then, calculate all the addition and subtraction.
	Calculate.	
	(a) $1+3) \times 5-7=$ 	

Pupils utilise the previous addition skills within mixed operation equations. Addition is carried out after multiplication and division. If only addition and subtraction are present in an equation, pupils work from left to right

Pupils use their understanding of adding the same noun when adding fractions with the same and different denominators.

Pupils use their understanding of equivalence to ensure the nouns and the denominators are the same before the calculation is completed.

Pupils use their understanding of adding the same nouns when adding decimal numbers. They use place-value knowledge and composing and decomposing at a rate of 10 when adding decimals. The procedure remains the same as adding whole numbers.

Subtraction Calculation Policy

Reception

Year	Topic/Strand	Representation		
Reception	Perceptual Subitising		0	zero
		-	1	one
		-	2	two
		${ }^{\bullet} \bullet$	3	three
		$\bullet \bullet$	4	four
		$\stackrel{\bullet}{\bullet}$	5	

A key development underpinning the ability to subtract is subitising. Perceptual subitising is when pupils can recognise the quantity of items in groups up to 5 without counting each item.

This is a mathematical structure that underpins subtraction situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection.

Reception
Less

1 more than 3 is \square.
1 more than 5 is \qquad
1 less than 4 is
1 less than 7 is
1 less than 10 is \qquad

Pupils relate subtracting 1 to one less than the starting number.

By knowing doubles, pupils can find half of a quantity that remains after half the quantity is subtracted

Pupils understand zero can be subtracted from any number but the number will remain unchanged.

Subtraction Calculation Policy

Year 1

| Year | Topic/Strand | Representation |
| :---: | :---: | :---: | Key Idea

This is a mathematical structure that underpins subtraction situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection.

Pupils develop an understanding of the parts and the whole within an equation.

Pupils develop automatic recall of number bonds to 10 . This can be shown using a ten frame, a number bond diagram and written as an equation This understanding can be related to subtracting tens, hundreds and so on when used with a sound understanding of place value.

Pupils are first introduced to a linear number system through the number track. This is a precursor to the number line.
Pupils may benefit from placing items on the number track as they count and subtract before moving on to use the more abstract number line.

Pupils move from a number track to a number line, starting from zero and having marked increments of 1 .

The use of the number line is further developed
when counting back starts from a given number relying on pupils' ability to locate and count back from a given number.

Pupils use their part-whole understanding to rename a number into its component parts in order to subtract from 10 within an equation.

Subtraction Calculation Policy

Year 2

Year	Topic/Strand	Representation	Key ldea
Year 2	Part-PartWhole	$\begin{aligned} 7-5 & =2 \\ 37-5 & =32 \end{aligned}$	This is a mathematical structure that underpins subtraction situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection. Pupils develop an understanding of the parts and the whole within an equation.
Year 2	Counting Back Using a Number Line	$37-5=$ Start counting back from 37. $37-5=32$	The use of the number line is further developed when counting back starts from a given number, relying on pupils' ability to locate and count back from a given number, including starting from a 2-digit number. Initially a 1-digit number is subtracted from a 2-digit number, then this progresses to a number line shown with intervals of 10 when subtracting 2-digit numbers that do not have any ones.
Year 2	Base 10 Blocks	\square to help you. -4日解 5 ones -1 one $=4$ ones $5-1=4$ $5 \text { tens }-1 \text { ten }=4 \text { tens }$ 5 tens $=50$ $50-10=40$	The use of base 10 blocks provides a representation of the place value primarily of 2-digit numbers. This representation is related to the formal written method but also encourages pupils to use their understanding of subtracting the same noun to subtract 2-digit numbers. For example, 50-30 can be understood as 5 tens - 3 tens. The difference between the numbers is 20 or 2 tens. An understanding of place value will support subtraction as well as addition, multiplication and division.

Subtraction Calculation Policy

Year 3

Year	Topic/Strand	Representation
Year 3	Part-PartWhole	
Year 3	Counting Back Using a Number Line	$796-600=196$
Year 3	Base 10 Blocks	
		$796-600=196$ There were 196 people left at the airport. $\begin{array}{lll} 796 & 600 \\ 700 & \begin{array}{ll} 700-600=100 \\ 96+100=196 \end{array} \end{array}$

This is a mathematical structure that underpins subtraction situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection.

Pupils develop an understanding of the parts and the whole within an equation.

The use of the number line is further developed when counting back starts from a given number, relying on pupils' ability to locate and count back from a given number, including starting from a 3-digit number.

Initially a 1-digit number is subtracted from a 3-digit number, then this progresses to a number line shown with intervals of 1 , then 10 and then progressing to 100

The use of base 10 blocks provides a representation of the place value of 3 -digit numbers. This representation is related to the formal written method but also encourages pupils to use their understanding of subtracting the same noun to subtract from 3-digit numbers. For example, 700 400 can be understood as 7 hundreds - 4 hundreds The difference between these numbers is 300 or 3 hundreds. Progression is made by subtracting ones then tens and finally hundreds before the subtraction of all 3 places is undertaken. An understanding of place value will support subtraction as well as addition, multiplication and division.

Year	Topic/Strand	Representation						Key Idea
		$748-425=$ \square Step 1 Subtract the on 8 ones-5 ones	ones					ils should understand that subtraction is
Year 3	Inverse Operation			อeอะ* (xix	$\begin{array}{r} \mathbf{h} \\ 7 \\ -\quad 4 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{t} \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathbf{o} \\ & 8 \\ & 5 \\ & \hline 3 \end{aligned}$	inverse operation of addition. They are encouraged to check completed subtraction calculations using addition.

Difference

Year 3

Using a
Bar Mode

Step 3 Subtract the hundreds. 7 hundreds -4 hundreds $=3$ hundreds

$748-425=323$
323 tomatoes are left.

Pupils are required to find the difference in a comparison problem when represented by a ba model. To find the difference, the known part is subtracted from the quantity it is being compared to. The comparison model reinforces the understanding of difference in subtraction

Subtraction Calculation Policy

Year 4

Year	Topic/Strand		esentation
Year 4	Part-Part- Whole		
		$\underline{-100}$	$-10-9$
		300	0

What is the difference between 432 and $119 ?$

There are not enough ones. Rename 1 ten as 10 ones.

This is a mathematical structure that underpins subtraction situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection.
Pupils develop an understanding of the parts and the whole within an equation.

Place-value counters are used to represen subtraction situations. This transition from base 10 blocks relies on pupils understanding the value of each counter without being able to count its physica attributes.

Pupils will have the opportunity to rename 1 counter to 10 counters with a value 10 times smaller in order to carry out a formal written method. The idea of decomposing at a rate of 10 should be well understood at this stage.

Year Topic/Strand
Representation
Key Idea

Pupils will use the formal written method initially without renaming, and then move to subtraction that requires renaming.
The procedure remains the same as learned in Year 3 but the numbers increase to include 4-digit numbers being subtracted from 4-digit numbers.

Using Addition to Check Subtraction
$5 \quad 3^{3} 4^{18} 8$
5348
$\begin{array}{llll}5000 & 300 & 30 & 18\end{array}$

Step 1 Subtract the ones.

$$
18 \text { ones }-9 \text { ones }=9 \text { ones }
$$

Step 2 Subtract the tens. 3 tens -3 tens $=o$ tens

Step 3 Subtract the hundreds.
3 hundreds -1 hundred $=2$ hundreds
Step 4 Subtract the thousands. 5 thousands -4 thousands $=1$ thousand
$5348-4139=1209$

$3002-198=2804$

Mental

Methods

Pupils are encouraged to check subtraction calculations by adding the parts (the subtrahend and the difference) to ensure the sum is equal to the whole (the minuend).

Mental subtraction methods include partitioning the minuend to simplify the subtraction calculation. The approach shown is supported by an understanding of number bonds to 10 and to 100 .

Pupils use their understanding of subtracting the same nouns when subtracting fractions with the same denominator

The subtraction of fractions or finding the difference between fractions is supported through pictorial representation.

Pupils use their understanding of equivalence to ensure denominators are the same before carrying out the subtractions.

Subtraction Calculation Policy

Year 5

Pupils use place-value counters to support counting back in thousands to find the difference.

Count back 30000 from 153672

Counting Back

Number Lines

Pupils count back in thousands and ten thousands, using a number line to show this counting back
method.

Rename 1 thousand as 10 hundreds.

Subtract 7 hundreds from 14 hundreds.

Subtract the thousands.
Subtract the ten thousands.

$$
\begin{array}{r}
414 \\
55^{14} 400 \\
-13700 \\
\hline 1700
\end{array} \begin{array}{r}
5^{4} 5^{14} \underline{400} \\
-13700 \\
\hline 41700
\end{array}
$$

Place-value counters are used to represent the formal written method. The procedure to subtract using numbers up to 6 -digits using the formal written method remains the same as when it was first introduced.

Pupils begin at the least value place and work to the left through the places to find the difference.

Renaming takes place when a calculation in a place cannot be done. Again, this procedure is the same as when this was first learned and requires the renaming of the minuend.

The renaming of the minuend is also represented using a number bond, providing the foundation for mental methods that require renaming.

Key Idea

Checking

by Using
Estimation
and Addition
$75241-34658=40583$

Year 5	Checking by Using Estimation and Addition	$\begin{gathered} 75241-34658=40583 \\ \begin{array}{r} 40583 \end{array} \begin{array}{c} \text { I checked my answer } \\ \text { using addition. } \end{array} \\ +34658 \end{gathered}$	
		$\begin{aligned} 75241-34658 & \approx 75000-35000 \\ & =40000 \end{aligned}$	I checked my answer using estimation.

Pupils are encouraged to check the reasonableness of their answers by initially finding an estimated difference.

When using estimation to check, pupils initially round to the nearest thousand before calculation.

When using addition to check the difference, pupils add the difference and the subtrahend to check it is equal to the minuend.

Pupils use their understanding of subtracting the same nouns when subtracting fractions with the same denominator. The subtraction of fractions or finding the difference between fractions is supported through pictorial representation. Pupils use their understanding of equivalence to ensure denominators are the same before carrying out the subtractions.

Year Topic/Strand

Subtraction Calculation Policy

Year 6

Year Topic/Strand \quad Representation

	Subtraction within Order of Operations	First, carry out all the operations in (). Next, perform all the multiplication and division. Then calculate all the addition and subtraction. $15-4 \times 3=15-12$ 3
Year 6		

Pupils utilise the previous subtraction skills within mixed operation equations. Subtraction is carried out after multiplication and division. If only addition and subtraction are present in an equation, pupils work from left to right.

Pupils are expected to utilise previously learned subtraction skills within increasingly complex situations. The procedure of subtraction is often at a level previously learned in isolation but the skill being developed is identifying when to use subtraction within a problem.

Multiplication Calculation Policy
 Reception

Year Topic/Strand \quad Representation \quad Key Idea

Reception Equal Groups | Pupils learn to recognise groups that are equal |
| :--- |
| in quantity, initially using like items and then |
| progressing to different items. |
| Pupils understand that equal groups can be |
| represented by concrete items, diagrams and written |
| numbers. |
| Pupils need to be secure in the abstraction principle |
| of counting the quantity of items, regardless of the |
| properties or characteristics of the items, in order to |
| recognise equal groups in a range of situations. |
| Reception |
| Addition |
| Andition and equal groups are concepts that |

Multiplication Calculation Policy

Year	Topic/Strand	Representation	Key Idea
			Pupils learn to recognise groups that are equal in quantity, initially using like items and then progressing to different items.
Year 1	Equal Groups	There are 2 in each group. Each group has an equal number How many it are of ($)$. in each group? The balls are in equal groups.	Pupils understand that equal groups can be represented by concrete items, diagrams and written numbers. Pupils need to be secure in the abstraction principle of counting the quantity of items, regardless of the properties or characteristics of the items, in order to recognise equal groups in a range of situations.

Initially, multiplication is shown as the addition of equal groups. The key idea of adding like nouns still applies in multiplication. A group of 3 bananas and 3 apples does not result in 6 bananas or 6 apples. In order to add, the nouns must be the same, in this case 6 pieces of fruit. This is also true of multiplication: 2 groups of 3 pieces of fruit makes 6 pieces of fruit.
Year Topic/Strand \quad Representation \quad Key Idea

Pupils start to count in multiples of 2 and multiples of 10 , then progress to counting in multiples of 2,5 and 10 supported by discrete, countable representations.

Multiplication is represented by arrays, beginning with making equal rows and further developing the language associated with arrays. For example: 'There are 3 rows of 5 . There are 15 altogether.'

3 rows of 5
3 fives $=15$
There are 15 children altogether.

Year	Topic/Strand	Representation	Key Idea

Multiplication Calculation Policy

Year 2

Pupils learn to recognise groups that are equa in quantity, initially using like items and then progressing to different items.

Pupils understand that equal groups can be represented by concrete items, diagrams and written numbers

In Year 2, the progression to multiplication from repeated addition is shown as $3+3+3+3+3$ being equal to 5 groups of 3 and 5 groups of 3 being equal to 5×3. Pupils read 5×3 as 5 groups of 3 .

Key Idea

As pupils become more fluent and their understanding of their times tables increases, they are expected to use this knowledge to calculate associated facts.

A pupil should be able to relate 10×5 to 9×5, knowing that the latter expression is 1 group of 5 less. So, $9 \times 5=50-5$.

Counting in multiples is shown on a number line. The increasingly abstract nature of the number line is shown as intervals change from 1 to 2,5 and 10.

$5 \times 5=25$

Year	Topic/Strand	Representation	Key Idea

Multiplication Calculation Policy

Year 3

When a pupil knows that the size of a group is 3 4 and 8 and the group size remains consistent, they can count in multiples of 3,4 and 8 to find the product. Counting in multiples is supported by representation on a number line.

Year	Topic/Strand	Representation	Key Idea
Year 3	Associated Facts	$\begin{aligned} 4 \times 3 & =12 \\ 5 \times 3 & =12+3 \\ & =15 \end{aligned}$	Once the understanding of multiplication as the adding of equal groups is secure, this knowledge can be used to find unknown facts. For example, if a pupil knows 5×3 as 5 groups of 3 , they can understand that 6×3 is simply 1 more group of 3 . So, $6 \times 3=15$ $+3 ; 4 \times 3$ is seen as 1 group fewer than $5 \times 3 ; 4 \times 3$ $=15-3$. This structure is used in all multiplication tables.
Year 3	Number Patterns		Pupils count in multiples of 3,4 or 8 to identify missing multiples in a sequence. This reinforces the products found within the 3,4 and 8 times tables.
Year 3	Commutativity	 4848 4 48 484848 48 4 48 4 4 48 4848 (4848 There are 5 rows of 8 mushrooms. $5 \times 8=40$ There are 8 rows of 5 mushrooms. $8 \times 5=40$ 5×8 is the same as 8×5. There are 40 mushrooms.	The representation of multiplication as an array is used to further develop the understanding of commutativity. Having first understood multiplication as [] groups of [], pupils develop an understanding that 5×3 can also be read as 5 multiplied 3 times. Pupils should have a firm understanding that the order the factors are multiplied in does not change the product.

Year Topic/Strand
Representation

Key Idea

Year 3

Number Bonds
Multiply 2 tens by 4.

$$
4 \times 20=80
$$

Base 10 blocks are used to support the understanding of multiplication of 2-digit numbers. Language and understanding is developed through the representation of 3×20 as 3×2 tens $=6$ tens.

Pupils use known multiplication tables to 10 together with the place-value names of the digits being used to carry out the multiplication.

This method is used to multiply a 2-digit number by a 1-digit number. Initially, the method shows the product of the multiplication of the ones, then the product of the multiplication of the tens, before adding the products to find the total. This method progresses to include renaming and finally moves to a shortened form of the written method. The method is finally shown as a version of the formal written method, in which the product of the multiplication of each place is shown as a single product, with any renaming added above each place in the multiplication.

Multiplication Calculation Policy

Year \begin{tabular}{lll}
Topic/Strand

Multiplying by

11

Using 12

Associated

Facts
\end{tabular}

Year

Year

3×4 is equal to 4×3.

Year 4

Commutativity

$2 \times 3 \times 5=$

Arrays are used to support the understanding of commutativity. Pupils learn the pattern of $a \times b=b$ $\times \mathrm{a}$. Regardless of the order in which the factors are multiplied, the product remains the same.

The commutative property is further developed through the multiplication of 3 numbers. 3 factors are multiplied in different orders and the product remains the same.

| Year | Topic/Strand | Representation |
| :--- | :--- | :--- | :--- |

Pupils learn to scale a product by a factor of 10 when multiplying a multiple of 10 . For example, we know 3 $\times 4=12$, therefore the product of 30×4 is 10 times greater: $30 \times 4=120$

Naming the place value of the digit supports this approach and pupils relate a known fact to multiplying multiples of 10 . For example, we can read 30×4 as 3 tens $\times 4$. So, 3 tens $\times 4=12$ tens or 120 .
We would expect pupils to generalise and see that $30 \times 4=3 \times 4 \times 10$. While this isn't formalised, this forms the basis of the distributive property of multiplication.

		2	1	8		
	\times			4		
			3	2	\longrightarrow	$8 \times 4=32$
Formal			4	0	\longrightarrow	$10 \times 4=40$
Written					\longrightarrow	$10 \times 4=40$
Method	+	8	0	0	\rightarrow	$200 \times 4=800$
		8	7	2	\longrightarrow	$218 \times 4=872$

Pupils use formal written methods, short and long, to multiply a 2-digit number by a 1-digit number. Initially the long method is used, showing the product of the multiplication of the ones, tens and hundreds, before adding the products to find the total. Pupils are shown the corresponding short formal written method so can make the links between the two procedures. Multiplication then moves from a 2-digit number by a 1 -digit number to a 3-digit number by a 1-digit number. Pupils should be aware that even though the number of digits in one number increases, the procedure remains the same.

Multiplication Calculation Policy

Year \quad Topic/Strand	
Year 5	Finding Factors
Year 5	

Sam would need 27 cubes to make a larger cube.

$1 \times 1 \times 1=1^{3}$

$$
2 \times 2 \times 2=2^{3}
$$

$=8$

3 rows of 3
$3 \times 3=3^{2}$
$=9$

$3 \times 3 \times 3=3^{3}$
$=27$

Year 5
Square and
Cube Numbers

iviuıtipiying

by 10,100
and 1000

$$
\begin{aligned}
& 5 \times 1000= \\
& 5 \times 1 \text { thousand }=5 \text { thousands } \\
& 5 \times 1000=5000
\end{aligned}
$$

Pupils are introduced to both square and cube numbers by the physical representation described by their names. These representations lead to abstraction, with pupils understanding that square numbers are the product of a number multiplied by itself and a cube number is the product made by multiplying a number twice by itself.

Pupils build on their understanding of multiplication by factors of 10 . They see that when a factor is made 10 times greater, the product is 10 times greater.
rupis use tneir knowieage oт umes tadies to underpin multiplying by 10,100 and 1000 , so $5 \times$ 1000 is equal to 5×1 thousand $=5$ thousands or 5000.

This follows a pattern that has been introduced in previous years.

Formal

Year 5

Written
Method

Multiply 253 by 17.

253
$\times \quad 17$
1771
$+\quad 2530$
4301

Pupils use formal written methods, short and long, to multiply a 3-digit number by a 1-digit number; then move on to multiply a 4-digit number by a 1-digit number.

Initially the long method is used, showing the product as a result of multiplying each place. Pupils then progress to the short formal written method making a link between the two procedures.
Next, pupils learn to multiply a 2-digit number by a 2-digit number, then a 3-digit number by a 2-digit number.

Links are made to the formal written procedure that they know. Pupils work systematically through the procedure progressing from multiplying by ones to multiplying by tens and ones.

Multiplication Calculation Policy

Year 6

Year	Topic/Strand	Representation	Key Idea
Year 6	Order of Operations	First, carry out all the operations in (). Next, perform all the multiplication and division. Then, calculate all the addition and subtraction. $\begin{aligned} 15-4 \times 3 & =15-12 & (15-4) \times 3 & =11 \times 3 \\ & =3 & & =33 \end{aligned}$ Follow the order First, do the of operations. Multiply, subtraction in the (). then subtract. Then multiply.	Pupils use the multiplication skills they have learned in previous years within expressions and equations that use multiple operations. Pupils learn to multiply within brackets first, then left to right in expressions and equations that use multiplication. The procedures to multiply remain the same throughout.
Year 6	Multiplying by 2-Digit Numbers		Pupils revisit the formal written method, multiplying up to 4 -digit numbers by 2 -digit numbers.

Year
Topic/Strand

Comont

1 row of 18 bags
$1 \times 18=18$

$\square \square \square$ ${ }_{0}^{\text {comport }}$ cemport

2 rows of 9 bags
$2 \times 9=18$

1, 2, 3, 6, 9 and 18 are factors of 18.

Comen ant

 Comex
 $\square \square \square$

3 rows of 6 bags
$3 \times 6=18$

Prior learning is expanded on by finding common factors within more challenging word problems.

Pupils are encouraged to partition larger numbers into known multiples to determine if the given number is a factor

Multiples of 4	4	8	12	16	20	24	28	32	36	40	44	48
Multiples of 6	6	12	18	24	30	36	42	48	54	60	66	72
Multiples of 8	8	16	24	32	40	48	56	64	72	80	88	96

24 and 48 are common
multiples of 4, 6 and 8 .

Pupils are introduced to common multiples with the understanding that they are a multiple of 2 or more numbers.

$$
\begin{aligned}
& \frac{1}{1} \times \frac{1}{1} /= \\
& 3 \quad 2
\end{aligned}
$$

Year 6

Multiplying Fractions

$\underline{1}_{\text {of }} \underline{1}_{\text {/ is }} \underline{1}_{\text {/. }}$
326

ultiplying

Decimals

Pupils learn to multiply proper fractions by proper fractions. They read fractions to support multiplication, so
$1 \times \frac{1}{}$ is read as 'What is 1 of 1 ?'
3535
Bar models are used to represent these problems pictorially.
Pupils progress to realise that the numerators can be multiplied and the denominators can be multiplied, but before this procedure can be embedded, pupils must have a deep understanding of what the equation means.

Pupils use the same formal written method procedure as they have previously.
Pupils need to pay special attention to the places of the digits in the multiplication. It is important that they do not see the decimal point as a place but rather as a symbol used to separate the whole parts from the decimal parts of a mixed number.

Division Calculation Policy
Reception

Year Topic/Strand

Representation

Key Idea

Pupils learn to recognise groups that are equal in quantity, initially using like items and then progressing to different items.
Pupils understand that equal groups can be represented by concrete items, diagrams and written numbers.

Pupils need to be secure in the abstraction principle of counting the quantity of items regardless of the items' properties or characteristics, in order to recognise equal groups in a range of situations.

Subtraction and equal groups are concepts that underpin division.
During Reception, pupils make equal groups and use equal groups when doubling numbers. While they are doubling numbers, they will see that the whole amount can be partitioned into 2 equal groups.

Year	Topic/Strand	Representation	Key Idea

Year 1

Equal Groups

Year 1

There are 2 in each group. Each group has an equal number of \cdot

How many il are in each group?

The balls are in equal groups.

Sam has 12 apples.
He puts the apples into groups of 4.

Pupils learn to recognise groups that are equal in quantity, initially using like items and then progressing to different items.

Pupils understand that equal groups can be represented by concrete items, diagrams and written numbers.

Pupils need to be secure in the abstraction principle of counting the quantity of items regardless of the items' properties or characteristics, in order to recognise equal groups in a range of situations.

Pupils initially use grouping for division. They put items into equal groups to find the number of equal groups that can be made from a set amount.

Year 1

Sharing

10 medals are shared equally among 5 friends.
How many medals does each friend get?

Counting in 2s,

$5 s$ and $10 s$

Pupils move from division through grouping to division through sharing. They share a set amount of items equally between a number of groups. The number of groups is known and pupils find the number of items in each group.

Pupils start to count in multiples of 2 and multiples of 10 , then progress to counting in multiples of 2,5 and 10 supported by discrete, countable representations.

Division Calculation Policy

Year 2

Pupils move from division through grouping to division through sharing. They share a set amount of items equally between a number of groups The number of groups is known and pupils find the number of items in each group.

Year	Topic/Strand	Representation						Key Idea Pupils are introduced to the division of numbers by 3, 4 and 8 using grouping initially. They make groups of 3,4 and 8 and then move on to sharing a total.
Year 3	Dividing by 3, 4 and 8	Sam put 32 cobs of corn into 4 equal groups. $32 \div 4=8$ Each group has 8 cobs of corn. 4 groups of 8 is 32 . $4 \times 8=32$						
		Amira and Ruby are making pizzas. They have 12 olives. They want to put 3 or 4 olives on each pizza. Can we make a family of multiplication and division equations to help them?						
Year 3	Division within Word Problems				12			Pupils extend their understanding of division by relating the division facts to multiplication facts, creating a multiplication and division fact family. Word problems get increasingly more complex and bar models are used to represent problems involving division.
		4 times 3 is 12 , so 12 divided by 3 is 4 . 12 divided into groups of 4 is equal to 3 .			4 is d by ed qual	so 3. een		

Division Calculation Policy

Year 81

Year Topic/Strand

Representation

Pupils are given division word problems and immediately relate the division used to solve the problem to the multiplication fact they have previously learned. The language associated with division is given, with pupils understanding that when the number is divided, the outcome is called the quotient.

Arrays and bar models are used to show the relationship between multiplication and division when learning to multiply and divide by 11 and 12 , building on the relationship already learned when dividing by 6,7 and 9 .
Year Topic/Strand \quad Representation
Tividing with
Rear 4
Remainders

The are 13 flowers.
The quotient is 4.
The remainder is 1.

Pupils learn that when dividing into equal groups, we can be left with a number of items less than the group size. This is introduced as the remainder Initially, the remainder is shown as a whole number.
$13 \div 3=4$ with 1 left over
The remainder is 1 .

Division word problems are supported by the use of arrays and bar models, reinforcing the idea of equal groups. Pupils relate the representations of the problems to the equations given. Comparison division models are also used to determine amounts when two separate amounts are compared.

Year Topic/Strand \quad Representation

Division Calculation Policy

Year 5

Year

Key Idea

This is a rectangle.

Prime and
Composite
Numbers

These are not rectangles.
There is only one way to arrange 17 cards.
$17=1 \times 17$
17 only has two factors, 1 and itself. 17 is a prime number.

How many groups of 1000 can we make from 3564?
100010001000100100100
100100
$\begin{array}{llll}10 & 10 & 10 & 1\end{array} 1$
$101010 \quad 1$

300564

Pupils use their understanding of rectangular arrays to look for prime numbers. They learn that any number that can only be made into a single rectangular array is a prime number. In describing this array, they make the connection that prime numbers only ever have two factors, itself and 1 They also learn that numbers with two or more factors can be described as composite numbers

Place-value counters and numbers bonds are initially used to represent division problems involving dividing by 10,100 and 1000 .

Pupils use their understanding of place value to support the division calculations. For example, 35 hundreds $\div 1$ hundred $=35$.

Dividing withou

Remainder
640
(100) (100) 100 $10 \quad 10$ 600

Dividing with
Remainder

Pupils use place-value counters and number bond diagrams to support their understanding of the long formal written method for division. Pupils are shown how numbers can be partitioned into known multiples before carrying out the division.

The same procedure used for dividing without a remainder is used for dividing with a remainder but once pupils have made the maximum possible number of equal groups, they have a quantity remaining that is less than the equal group size. This is the remainder. Initially, the remainder is shown as a whole number. This progresses to showing the remainder as a fraction. This progression is supported pictorially with a bar model. Pupils should also start to become aware that the representation of the remainder will be determined by the context of the problem.

Division Calculation Policy

Year 6

Year	Topic/Strand	Representation	Key ldea
		$\begin{aligned} 15-4 \times 3 & =15-12 \\ & =3 \end{aligned}$	
Year 6	Order of Operations	Follow the order of operations. Multiply, then subtract.	Pupils understand the order to calculate expressions and equations that have multiple operations.
Year 6	Dividing by a 2-Digit Number without Remainder	$\begin{aligned} & 450 \div 15= \\ & 45 \text { tens } \div 15=3 \text { tens } \\ & 450 \div 15=30 \end{aligned}$	Pupils use simple division to help them calculate more complex division. Initially, pupils understand that if the dividend increases by a factor of 10 and the divisor remains the same, the quotient will also increase by a factor of 10 . So, if $45 \div 15=3$, then $450 \div 15=30$. Pupils also use their understanding of factors to divide. They progress to show division using a long formal written method. Once the long method is understood, pupils move on to divide using a short formal written method. While the process remains the same, the notation changes to keep it within the short division structure.

$$
1 8 \longdiv { 3 \quad 2 } \begin{array} { r }
{ 3 8 ^ { 4 1 } }
\end{array} \text { remainder } 5
$$

Common
Multiples

Multiples of 4	4	8	12	16	20	24	28	32	36	40	44	48
Multiples of 6	6	12	18	24	30	36	42	48	54	60	66	72
Multiples of 8	8	16	24	32	40	48	56	64	72	80	88	96

The process used when dividing by a 2-digit number without a remainder stays the same when dividing with remainders. The process results in remainders that cannot be put into the equal group size as whole numbers. The context of the problem suggests
the form that the remainder will take and pupils decide on the best representation for the remainder depending on the context.

Pupils also use a unitary method of division to solve more complex word problems. Within these problems, they also use brackets to show the partitioning of numbers and how this can be used to support calculation in division problems.

Pupils work systematically through problems looking for common multiples of given numbers.

1 row of 18 bags
$1 \times 18=18$

$\square \square \square \square$ Coment $\square \square \square \square$ Comort ermex
 2 rows of 9 bags
 $2 \times 9=18$

1, 2, 3, 6, 9 and 18 are factors of 18

$\square \square$

 - emper ${ }^{-1} C^{c} C^{c}$

3 rows of 6 bags
$3 \times 6=18$

Elliott has 7 square tiles.

Elliott can only make 1 rectangular arrangement.

1 row of 7

$1 \times 7=7$
The factors of 7 are 1 and 7 .
7 is a prime number.

Pupils use long division to find common factors of given numbers. The method used to find common factors progresses to arrays and using tables to systematically find possible common factors

Arrays are used as they have been previously, looking for rectangular patterns. Pupils see that numbers that can only be made into 1 rectangular arrangement are prime numbers with factors of itself and 1

Dividing

Fractions by
Whole Numbers

Dividing

Year 6

Decimals without
 Renaming

$$
\frac{3}{4} \div 4=
$$

$\underline{3} \div 4=\frac{1}{2} \times \underline{3}=3$
$\begin{array}{llll}4 & 4 & 4 & 16\end{array}$

Pupils relate dividing fractions by a whole number to multiplying by its reciprocal. So, dividing by 4 is related to multiplying by ${ }^{1}$. We also read this

4
as ' 4 of'. The procedure of dividing fractions
by whole numbers is supported by the use of bar
models and pictorial representation.

Initially, place-value counters are used to show the division procedure that should be well known by pupils at this stage. The long formal written method is then used to divide decimal numbers without
renaming the dividend. The procedure for long division does not change. Pupils need to be mindful of the placement of the digits and remember that the decimal point does not represent a place. Simply the decimal point separates the whole and fractional parts of a number.

Initially, place-value counters are used to show the division procedure that should be well known by pupils at this stage. The long formal written method is then used to divide decimal numbers without a remainder. The procedure for long division with renaming does not change from what pupils have experienced previously. Pupils need to be mindful of the placement of the digits and remember that the decimal point does not represent a place. Simply, the decimal point separates the whole and fractional parts of a number.

3 tenths +1 hundredth $=0.3+0.01$
$=0.31$
$4.65 \div 15=0.31$

Pupils initially divide decimal numbers by 2-digit whole numbers where the dividend is easily broken into multiples of the divisor. Number bonds demonstrate the partitioning in order to divide using long and short formal written methods of division.

x	18	3	90
$\frac{X}{3}$			

Pupils use their understanding of division to determine unknown values with algebraic expressions and equations.

