Maths HT1

 Knowledge Organiser

 Knowledge Organiser

 Year 7

 Year 7}

"Knowledge is Power"
Francis Bacon 1597

Year 7 Knowledge Organiser: Maths HT1

A. Key Terminology			Examples
1	Number	An arithmetical value, expressed by a word, symbol, or figure, representing a particular quantity	'Two' can be written as ' 2 ' or shown as 2 of something.
2	Integer	Whole numbers including zero. These can be positive or negative numbers. They cannot have a decimal or fraction.	$-2,-1,0,1,2,3, \ldots$
3	Positive number	Any number above zero.	1, 2, 3, 4........
4	Negative number	Any number below zero. Always written with a negative sign in front of it.	$-1,-2,-3,-4 \ldots \ldots$.
5	Decimal	A number with a decimal point in it. Can be positive or negative.	0.2, -0.57, 1.23 etc.
6	Operation	In mathematics, an operation is a function which takes some input (or inputs) and produces an output. The most common operations are addition, subtraction, multiplication, and division.	$+,-, \times, \div$
7	Inverse operation	The operation that reverses the effect of another operation.	
8	Addition	Finding the total value of two or more numbers. To add. Other terms: plus, sum, total. Addition is the inverse operation of subtraction.	$\begin{aligned} & \text { Symbol: + } \\ & 3+2=5 \end{aligned}$
9	Sum	The sum is the result of adding two or more numbers.	The sum of 3 and 2 is 5
10	Subtraction	Subtraction is when you find the difference between two numbers. To subtract. Other terms: minus, take-away. Subtraction is the inverse operation of addition.	Symbol: - $7-5=2$
11	Find the difference	The result of subtracting one number from another. Finding the distance between two numbers on a number line.	The difference between 17 and 23 $23-17=6$ The difference between them is 6 .
12	Multiplication	Multiplication is the operation of scaling one number by another. Multiplication is the inverse operation of division.	$\begin{aligned} & \text { Symbol: } \times \\ & 3 \times 11=33 \\ & \hline \end{aligned}$
13	Product	Product is the result of multiplying two or more numbers.	The product of 4 and 5 is 20 . $4 \times 5=20$
14	Division	Division can be sharing - the number to be divided is shared equally into the stated number of parts. Division is the inverse operation of multiplication.	Symbol: \div $8 \div 4=2$
15	is Equal to	To be equal to, is to have the same value or amount.	$\begin{aligned} & \text { Symbol: }= \\ & 2 \times 3=4+2 \\ & \hline \end{aligned}$
16	is Not equal to	To be not equal to, is to not have the same value or amount. Also known as an inequality.	$\begin{aligned} & \text { Symbol: } \neq \\ & 2 \times 5 \neq 11 \end{aligned}$
17	Less than	A value or amount that is less than another value or amount.	Symbol: < $21<3021$ is less than 30
18	Greater than	A value or amount that is greater than another value or amount.	Symbol: > $30>2130$ is greater than 21
19	Factor	Factors are numbers that divide exactly into another number.	The factors of 8 are: $1,2,4,8$.
20	Multiple	The result of multiplying a number with a whole number, multiples are really just extended times tables.	The multiples of 2 are: $2,4,6$, 8.....and so on

B. Place Value and Ordering Integers and Decimals									Examples
1	Place Value	The value of a digit in a number depends upon its position, or place. The position, or place, of each digit represents a power of ten.							In 1234 the digits represent 1 thousand, 2 hundreds, 3 tens, and 4 ones.
		counds	reds		${ }_{\text {Ones }}^{15}$		Trents		
		1	6	8	2			7	3
2	Zero place holder	A zero that is used as a place holder to represent the absence of a particular power of ten.							The number 702 has no tens.
3	to Order numbers	Ordering numbers is a method of arranging them in order, often in ascending or descending order.							
4	Ascending	To order a set of numbers of values from smallest to largest.							These numbers are in ascending order: 1, 2, 3, 4, 5
5	Descending	To order a set of numbers of values from largest to smallest.							These numbers are in descending order: 5, 4, 3, 2, 1
6	Order integers	To order whole numbers: order by the number of digits and look at what each digit in each number represents.							These numbers are in ascending order: 1, 31, 101, 2536
7	Order decimals	To order decimals: order by whole number part, then put the decimal parts in order by comparing the digits in each decimal place working from left to right.							These numbers are in ascending order: 0.2, 1.3, 2.05, 10.1
8	Number line	A number line is a line with numbers which can be positive or negative, integers, decimals, or fractions, and these are placed in the correct position at even intervals along the number line.							
		Negative Numbers				Positive Numbers			
Numbers to the left on a number line are smaller than those to their right. The value of negative numbers decreases from right to left. For example, $\mathbf{- 7}$ is less than $\mathbf{- 2}$									
9	Less than	A value or amount that is less than another value or amount. Symbol: <							$21<3021$ is less than 30
10	Less than or equal to	A value or amount that is less than or equal to another value or amount. Symbol: \leq							The value x is \leq to $£ 12$, so x could be $£ 12$ or it could be $£ 20$
11	Greater than	A value or amount that is greater than another value or amount. Symbol: >							$30>2130$ is greater than 21
12	Greater than or equal to	A value or amount that is greater than or equal to another value or amount. Symbol: \geq							The value x is \geq to $£ 12$
13	Rounding Numbers	Rounding means making a number simpler but keeping its value close to what it was. The result is less accurate, but easier to use. 43 rounded to the nearest ten is 40 , because 43 is closer to 40 than to 50 . But 46 goes up to 50 . - Decide which is the last digit to keep - Leave it the same if the next digit is less than 5 (this is called rounding down) - Increase it by 1 if the next digit is 5 or more (this is called rounding up)							
14	Round to decimal places	A number can be rounded to any number of decimal points, often to 1 or 2 decimal places (d.p.). The number 1.253 rounded to 1 d.p. is 1.3 , and to 2 d.p. is 1.25 .							
15	Significant figures	If something is 'significant' it is large or important. The most significant figure means 'largest' or 'most important'. The first significant figure (s.f.) in a number is the first digit that is not 0 . In the number 321 , the first s.f. is the 3 which represents 300 . We can round to any number of s.f., often to 1 s.f. The number 757 rounded to 1 significant figure would be 800 .							

C. Solving Problems with Addition and Subtraction			Examples
1	Addition	Finding the total value of two or more numbers. To add. Other terms: plus, sum, total. Addition is the inverse operation of subtraction.	$\begin{aligned} & \text { Symbol: + } \\ & 3+2=5 \end{aligned}$
2	Subtraction	Subtraction is when you find the difference between two numbers. To subtract. Other terms: minus, take-away. Subtraction is the inverse operation of addition.	Symbol: - $7-5=2$
3	Commutative	Addition is commutative - the order of addition does NOT change the result. Subtraction is NOT commutative. The order of subtraction does change the result.	$2+3=3+2$
4	Associative	Addition is associative. When you add you can do so regardless of how the numbers are grouped. Subtraction is not associative.	$1+(2+3)=(1+2)+3$
5	Column Addition	It is not always possible to complete addition calculations mentally (i.e., in your head), you can use column addition. Use the following steps: - List the numbers being added together underneath one another, so that digits with the same place value are aligned vertically. - Always work from right to left, - Add the numbers in the ones column first, write the answer underneath the numbers that are being added together, - If the answer has 2 digits than the second digit is written underneath the numbers being added, and the first digit is carried over to be added to the next place value column.	To solve the addition: $56+272+191$
6	Column Subtraction	It is not always possible to complete subtraction calculations mentally (i.e., in your head), you can use column subtraction. Use the following steps: - List the number being subtracted under the other number, - Ensure the digits with the same place value are aligned vertically, - Always work from right to left, - Subtract the numbers in the ones column first and write the answer underneath the ones column. - Continue to work from right to left until you have completed all subtraction calculations and you have your answer, - If the top number is smaller than the bottom number, take one from the column to the left and exchange it to enable you to complete the subtraction. - In this example, in the tens column, because the 3 is smaller than the 7 , you take 1 from the hundreds column and exchange it for ten tens so the tens column becomes 13 .	To solve the subtraction: 639-271

Year 7 Knowledge Organiser: Maths HT1

C. Solving Problems with Addition and Subtraction			Examples
7	Perimeter	Perimeter is the total distance around a two-dimensional (or flat) shape. To calculate the perimeter of a shape, add together the lengths of all the sides.	The perimeter of the football field is 340 m : $100+100+70+70=340 \mathrm{~m}$
8	Measurement	The metric units of length are millimetre (mm), centimetre (cm), metre (m) and kilometre (km) - $10 \mathrm{~mm}=1 \mathrm{~cm}$ - $100 \mathrm{~cm}=1 \mathrm{~m}$ - $1,000 \mathrm{~m}=1 \mathrm{~km}$	We can convert between different units of measurement: 123 cm is the same as 1.23 m 123 cm is the same as 1230 mm
9	Measurement	The metric units of mass are grams (g) and kilograms (kg) - $1,000 \mathrm{~g}=1 \mathrm{~kg}$	$3,000 \mathrm{~g}$ is the same as 3 kg
10	Measurement	The metric units of capacity are millilitres (ml) and litres (I) - $1,000 \mathrm{ml}=1$ ।	1.25 I is the same as $1,250 \mathrm{ml}$
11	Money	The currency used in the UK is pounds is a range of coins and pence (100 p) equate to one pound ($£ 1$). The format for writ which is four pounds and two pence.	d notes that are used. One hundred ing pounds and pence is: $£ 4.02$
12	Time	Units of time are seconds (secs), minutes (mins), hours (hrs) - 60 seconds $=1$ minute - 60 minutes $=1$ hour - 24 hours $=1$ day - 1 week = 7 days - 365 days $=1$ year	days, weeks, years.
13	Time	Analogue Telling the Time	Digital Half past one
14	Time	Time can be represented in 12-hour format (e.g., 3am or 3p 15:00), or 24-hour format (e.g., 03:00 or
15	Days	Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, S	aturday, Sunday
16	Months	January (31 days), February (28 days unless a leap year then days), May (31 days), June (30 days), July (31 days), August October (31 days), November (30 days), December (31 days).	29 days), March (31 days), April (30 (31 days), September (30 days),).

Year 7 Knowledge Organiser: Maths HT1

D. Shape			Examples
1	Parallel Lines	Parallel lines are two lines that never meet however far they are extended. They are always an equal distance apart from one another.	
2	Perpendicular Lines	Perpendicular lines are defined as two lines that meet or intersect (cross) each other at a right angle $\left(90^{\circ}\right)$.	
3	2D shape	2D stands for 2-dimensional. 2-dimensional shapes are flat and only have two dimensions: length and width. They include squares, rectangles, circles, triangles........	
4	Quadrilateral	A quadrilateral is a 4 -sided 2D shape. They have 4 sides and 4 angles. The interior angles always add up to 360°.	Types include square, rectangle, parallelogram, rhombus
5	Triangle	A triangle is a 3 -sided 2D shape. They have 3 sides and 3 angles. The interior angles always add up to 180°	Types include isosceles, equilateral, scalene, right angle
6	Polygon	A polygon is a 2D shape that has 3 sides or more, are made of straight lines, and are closed (no open sides)	
7	Regular polygon	A polygon is regular is all its sides and interior angles are equal.	
8	Irregular polygon	An irregular polygon can have sides of any length and interior angles of any size.	
9	Polygon	Common polygons include triangle, quadrilateral, pentagon, hexagon, heptagon, octagon	
10	3D Shape	3D shapes have three dimensions - length, width, and depth.	Types include cube, cuboid, triangular prism, cylinder, pyramid
11	Face	Any of the individual flat surfaces of a solid object.	vertex
12	Vertex	A point where two or more line segments meet. A corner.	Ee
13	Edge	Edges are the line segments that join one vertex to another and are also where the shape's faces meet.	
14	Compound Shape	A composite or compound shape is any shape that is made up of two or more geometric shapes.	

2-D SHAPES AND POLYGONS

Square

3-D SHAPES

E. Co-ordinates and Symmetry			Examples
1	Axis	- A graph is made up of an x-axis and a y-axis. The horizontal axis is called the x -axis, this is the axis going across from left to right. - The vertical axis is called the y-axis, this is the axis which goes up and down.	
2	Coordinates	- A point on a grid has two numbers to identify its position. These numbers are known as coordinates. - Coordinates are always written as the x-coordinate value (across) first, and the y-coordinate value (up or down) second.	
3	Origin	The coordinate (0,0), where the x-axis and y-axis intersect or cross.	
4	Coordinate plane (grid)	Divided into 4 quarters by the x-axis (horizontal) and the y axis (vertical): Quadrant 1: x and y are positive. Quadrant 2: x negative and y positive. Quadrant 3: x and y are negative. Quadrant 4: x positive and y negative.	
5	Line Symmetry	A line of symmetry, or line of reflection, divides an object into two parts that are the same size and shape	
6.	Line symmetry \& Polygons	For a regular polygon, the number of sides is equal to the number of lines of symmetry.	
7	Reflection	A reflection produces a mirror image of a shape along a line of reflection. An image can be reflected across a line of reflection. The line of reflection could be the x-axis or y axis, or a given line on a grid. In the given example, shape A (the object) has been reflected across the x-axis to create the reflected image, shape B.	
8	Rotational Symmetry	- A shape has rotational symmetry when it can be rotated (less than 360°) and look exactly the same as it did at its starting point. - The order of rotational symmetry is the number of times it fits into itself through a rotation of 360°. - If a shape only fits into itself once, it has no rotational symmetry. We also state that it has rotational symmetry of order 1 .	
9	Rotational Symmetry \& Polygons	In regular polygons, the order of rotational symmetry is equal to the number of sides	The order of rotational symmetry of a regular octagon is 8

