Maths HT1

Knowledge Organiser

$$
\text { Year } 8
$$

"Knowledge is Power"

Francis Bacon 1597

Year 8 Knowledge Organiser: Maths HT1

A. Key Terminology			Examples
1	Number	An arithmetical value, expressed by a word, symbol, or figure, representing a particular quantity	'Two' can be written as ' 2 ' or shown as 2 of something.
2	Integer	Whole numbers including zero. These can be positive or negative numbers. They cannot have a decimal or fraction.	$-2,-1,0,1,2,3, \ldots$
3	Positive number	Any number above zero.	1, 2, 3, 4........
4	Negative number	Any number below zero. Always written with a negative sign in front of it.	$-1,-2,-3,-4$.
5	Decimal	A number with a decimal point in it. Can be positive or negative.	0.2, -0.57, 1.23 etc.
6	Operation	In mathematics, an operation is a function which takes some input (or inputs) and produces an output. The most common operations are addition, subtraction, multiplication, and division.	+ , - , \times, \div
7	Inverse operation	The operation that reverses the effect of another operation.	
8	Addition	Finding the total value of two or more numbers. To add. Other terms: plus, sum, total. Addition is the inverse operation of subtraction.	$\begin{aligned} & \text { Symbol: + } \\ & 3+2=5 \end{aligned}$
9	Sum	The sum is the result of adding two or more numbers.	The sum of 3 and 2 is 5
10	Subtraction	Subtraction is when you find the difference between two numbers. To subtract. Other terms: minus, take-away. Subtraction is the inverse operation of addition.	Symbol: - $7-5=2$
11	Find the difference	The result of subtracting one number from another. Finding the distance between two numbers on a number line.	The difference between 17 and 23. $23-17=6$ The difference between them is 6 .
12	Multiplication	Multiplication is the operation of scaling one number by another. Multiplication is the inverse operation of division.	$\begin{aligned} & \hline \text { Symbol: } \times \\ & 3 \times 11=33 \\ & \hline \end{aligned}$
13	Product	Product is the result of multiplying two or more numbers.	The product of 4 and 5 is 20 . $4 \times 5=20$
14	Division	Division can be sharing - the number to be divided is shared equally into the stated number of parts. Division is the inverse operation of multiplication.	Symbol: - $8 \div 4=2$
15	is Equal to	To be equal to, is to have the same value or amount.	$\begin{aligned} & \text { Symbol: }= \\ & 2 \times 3=4+2 \end{aligned}$
16	is Not equal to	To be not equal to, is to not have the same value or amount. Also known as an inequality.	$\begin{aligned} & \text { Symbol: } \neq \\ & 2 \times 5 \neq 11 \\ & \hline \end{aligned}$
17	Less than	A value or amount that is less than another value or amount.	Symbol: < $21<3021$ is less than 30
18	Greater than	A value or amount that is greater than another value or amount.	Symbol: > $30>2130$ is greater than 21
19	Factor	Factors are numbers that divide exactly into another number.	The factors of 8 are: $1,2,4,8$.
20	Multiple	The result of multiplying a number with a whole number, multiples are really just extended times tables.	The multiples of 2 are: $2,4,6$, 8.....and so on

B. Ratio and Scale			Examples
1	Ratio	A ratio is a way of comparing two or more quantities. A ratio must be written in the correct order, with the quantity mentioned first written first.	The ratio of boys to girls in a class is $2: 3$. For every 2 boys there are 3 girls. The ratio of boys to girls is 2:3 and NOT 3:2. However, we could write the ratio as girls to boys which would be 3:2
2	Simplifying ratios	Ratios can be simplified by dividing each part of the ratio by the same number. To fully simplify a ratio, find the highest common factor of both numbers, then divide each part of the ratio by the highest common factor.	Ratio is 10 : 15 Highest common factor of 10 and 15 is 5 . Divide both parts by 5 i.e., divide 10 by 5 (=2), and divide 15 by 5 (=3) The simplified ratio is $2: 3$
4	Ratios as Fractions	Ratios can be converted to fractions. Add together the parts of the ratio to calculate the total parts. The denominator of the fraction is the total parts.	The ratio of pears to apples to oranges is 3:5:2 To calculate fraction of fruit that is oranges, the total number of fruits is the total parts and becomes the denominator i.e., $3+5+2=10$ The ratio value of oranges is the numerator. The fraction of fruit which is oranges is: $\frac{2}{10}=\frac{1}{5}$
5	Ratio in the form 1: n	Ratios can be written in the form of 1 part to n parts.	Write the ratio of red to blue in the form $1: n$ For every 4 red there are 12 blue: $\begin{gathered} \text { Red : Blue } \\ 4: 16 \\ 1: 4 \end{gathered}$
6	Dividing in a given ratio	Ratios can be used to divide an amount into a given ratio. The process to calculate the amount for each part of the ratio is to: - Add the numbers in the ratio to calculate the total number of parts, - Find the value of one part by dividing the total amount by the number of parts, - Multiply the value of one part by the numbers in the ratio to calculate the value of each of the ratio parts.	 Dora gets $£ 9$ and Jack gets $£ 15$
7	Given one part, calculate the value of another part and the total	If the value of one part of a ratio is known, the value of the other parts of the ratio and the total sum of the ratio can be calculated.	Rosie and Dora share some money in the ratio 1:3 If Dora gets $£ 60$, how much does Rosie get? $\begin{aligned} & \text { Calculations } \\ & £ 60 \div 3=£ 20 \\ & 1 \text { part }=£ 20 \\ & 4 \text { parts }=4 \times £ 20=£ 80 \end{aligned}$ Rosie gets $£ 20$. The total amount shared is $£ 80$
8	Scale up a ratio	A ratio can be scaled up	Pencils come in boxes of 8 How many pencils are there in 4 boxes? 32

C. Multiplicative Change			Examples
1	Direct proportion	Two quantities are in direct proportion if they increase or decrease in the same ratio, or at the same rate.	Pencils come in boxes of 8 . How many pencils are in 10 boxes: 1 box $=8$ pencils 10 boxes $=80$ pencils X 10
2	Unitary method	Unitary method for proportion is to calculate the value of one in order to then work out the value of a different amount.	Ronnie buys 18 identical t-shirts costing a total of $£ 36$. How much would 5 t-shirts cost? Use the unitary method, calculate the cost of 1 t -shirt, then calculate the cost of 5 t -shirts.
3	Non-unitary method	Non-unitary method for proportion is to calculate the value of an amount which isn't one in order to work out the value of a different amount.	Sally buys 14 identical t -shirts costing a total of $£ 8$. How much would 35 t -shirts cost?
4	Conversion Graphs	Conversion graphs are used to change one unit into another. For example, changing between miles and kilometres or pounds sterling to a foreign currency. These units are directly proportional.	 This conversion graph can be used to convert between Pounds (£) and Euros (€)
5	Converting Currency	Direct proportion can be used to convert between different currencies.	The currency in Hong Kong is the Hong Kong Dollar (HK\$). We can buy HK\$10.28 for $£ 1$. How much can we buy with $£ 30$?
6	Scale Factor	Scale factor is the number used to multiply the dimensions of one object by to get an object that looks the same, but it is larger or smaller than the original object.	- If \mathbf{A} is the original shape, what has happened to create \mathbf{B} ? - Each side has doubled in length, so it has been multiplied by 2 . - This means \mathbf{A} has been enlarged by a scale factor of 2.
7	Scale Drawings	Scale drawings represent real objects with accurate lengths reduced or enlarged by a given scale factor.	The plan of a room is drawn at a scale of $1: 50$, this means that the room is 50 times bigger in real life than in the drawing. If one side of the room is 200 cm in real life, on the scale drawing it will be $200 \div 50=4$, so it will be 4 cm .

E. Fractions: Four operations			Examples
1	Expressing as a fraction	Write the first number or amount as the numerator, and the second as the denominator. Simplify if possible.	Write 5 as a fraction of 15. $\frac{5}{15}=\frac{1}{3}$
2	Fraction of an amount	To find a fraction of an amount: - Divide the amount by the denominator (bottom number) - Multiply the answer by the numerator (top number)	What is $\frac{4}{5}$ of $£ 30$? - Divide $£ 30$ by $5=6$ - So $\frac{1}{5}$ of $£ 30$ is $£ 6$ - To find $\frac{4}{5}$ multiply $£ 6$ by $4=£ 24$
3	Add and subtract fractions	Add the fractions together to find the answer. Remember to only add the numerators. $\frac{3}{12}+\frac{4}{12}=\frac{7}{12}$	
4	Add and subtract mixed numbers	When adding or subtracting with mixed numbers, change the mixed numbers into improper fractions, complete the calculation. Simplify if possible.	$\begin{aligned} & 2 \frac{1}{3}-1 \frac{5}{6} \\ = & \frac{7}{3}-\frac{11}{6}= \\ = & \frac{14}{6}-\frac{11}{6}=\frac{3}{6}=\frac{1}{2} \end{aligned}$
5	Multiply fractions	To multiply fractions, multiply the numerators and the denominators. Simplify if possible.	$\frac{1}{2} \times \frac{2}{3}=\frac{2}{6}=\frac{1}{3}$
6	Multiply fraction by an integer	- To multiply a fraction by an integer, first convert the integer into a fraction, then complete the multiplication calculation. - To convert an integer into a fraction, write the integer as the numerator, and 1 as the denominator. For example, to write 4 as a fraction it would be $\frac{4}{1}$	$\begin{aligned} & \frac{1}{5} \times 4 \\ = & \frac{1}{5} \times \frac{4}{1} \\ = & \frac{4}{5} \end{aligned}$
7	Reciprocal	The reciprocal of a number is the number you would have to multiply it by to get the answer 1 . Reciprocal of an integer: convert the integer into a fraction and then turn the fraction upside down. Reciprocal of a fraction: turn the fraction upside down	The reciprocal of 2: - $2 \times \frac{1}{2}=1$, so reciprocal is $\frac{1}{2}$ Method: - Convert 2 into a fraction $\frac{2}{1}$ - Turn the fraction upside down - Reciprocal of 2 is $\frac{1}{2}$ The reciprocal of $\frac{3}{4}$ is $\frac{4}{3}$
8	Divide fractions	To divide fractions, we convert the calculation into a multiplication calculation. The first fraction is multiplied by the reciprocal of the second fraction.	$\frac{2}{3} \div \frac{1}{2}=\frac{2}{3} \times \frac{2}{1}=\frac{4}{3}=1 \frac{1}{3}$
9	Divide fraction by an integer	To divide a fraction by an integer, first convert the integer into a fraction, then complete the division calculation.	$\begin{aligned} \frac{1}{2} \div 3 & =\frac{1}{2} \div \frac{3}{1} \\ & =\frac{1}{2} \times \frac{1}{3}=\frac{1}{6} \end{aligned}$

E. Measures of Location			Examples
1	Average	An average is a measure of the middle value of a date set. There are three main types of averages: mean, mode and median.	
2	Mean	The mean is the sum of the value divided by the number of values: $\text { Mean }=\frac{\text { Sum of values }}{\text { Number of values }}$	Sam scored the following marks in 3 Maths tests: $87 \%, 72 \%, 91 \%$ His mean mark was: $\frac{87+77+91}{3}=\frac{255}{3}=85 \%$
3	Mode	The most common or frequent value from a set of data. The value that occurs the most often. A data set can have no mode. A data set can have more than one mode. A data set that has two modes is bimodal.	Mode of this data set is 7 : $3,3,6,7,7,7,8,9,10$
4	Median	The median is the 'middle value' when a data set is arranged in order of size.	Data set: 9, 5, 15, 6, 8 Ordered data set: 5, 6, $\underline{8}, 9,15$ Middle value is: 8 Median of data set is 8
5	Median	A data set with an odd number of data values will only have one 'middle value'.	
6	Median	A data set with an even number of data values will have two 'middle values'. To calculate the median value the mean of the two 'middle values' must be calculated.	Data set: $12,2,6,10,8,4$ Ordered data set: $2,4, \underline{\mathbf{6}}, \underline{\mathbf{8}}, 10,12$ Middle values are: 6, 8 Mean of middle values is: $\frac{6+8}{2}=\frac{14}{2}=7$ Middle value is: 7 Median of data set is 7
7	Range	The range is not an average, but a measure of the spread of the values in a data set. The range of a data set is calculated by subtracting the smallest value in the data set from the largest value.	Data set: $14,16,16,17,19$ Smallest value: 14 Largest value: 19 Range: $19-14=5$ Range of data set is 5 .

